Explanation:
To find the 13th term of the Fibonacci sequence, we follow the standard sequence (0, 1, 1, 2, 3, 5, 8, ...): f1=0, f2=1, f3=f1+f2=0+1=1, f4=f2+f3=1+1=2, f5=f3+f4=1+2=3, f6=f4+f5=2+3=5, f7=f5+f6=3+5=8, f8=f6+f7=5+8=13, f9=f7+f8=8+13=21, f10=f8+f9=13+21=34, f11=f9+f10=21+34=55, f12=f10+f11=34+55=89, f13=f11+f12=55+89=144
Explanation:
To find the 13th term of the Fibonacci sequence, we follow the standard sequence (0, 1, 1, 2, 3, 5, 8, ...): f1=0, f2=1, f3=f1+f2=0+1=1, f4=f2+f3=1+1=2, f5=f3+f4=1+2=3, f6=f4+f5=2+3=5, f7=f5+f6=3+5=8, f8=f6+f7=5+8=13, f9=f7+f8=8+13=21, f10=f8+f9=13+21=34, f11=f9+f10=21+34=55, f12=f10+f11=34+55=89, f13=f11+f12=55+89=144